
December, 2006

Advisor Answers

Sedna, VFPX and VFPy

VFP 9

Q: What is Sedna? Is that the code name for VFP 10? When will it
ship?

A: While Sedna is the code name for the next release of Visual FoxPro,
it's almost certainly not going to be called VFP 10. After evolving for

about 20 years, VFP offers a very mature language and development
environment. While many of us would like to see various changes, it's

hard to think of major enhancements for the core of the product; that
is, there's nothing out there that justifies a complete version upgrade.

VFP has always had a fairly open architecture compared to other
products. Many of the native tools store their data in tables, and quite

a few of the tools are written in VFP code. The latter are generally
referred to as the Xbase tools, and VFP comes with the source code for

almost of them.

Over the last few versions, Microsoft has made the product even more
open. For example, while the core IntelliSense functionality is built in,

IntelliSense was designed from the start to be extensible. VFP 9
introduced the _MENUDESIGNER variable that lets you substitute a

different menu designer tool. Of course, the entire new reporting
system, while rooted in the core product, is open and extensible; you

can add your own report listeners and previewers, and even replace
the report builder application that's used at design-time. VFP 9 also

added the ability to replace items on the native VFP menus with your
own code and provides significant customization options for the

Property Sheet.

At the same time, recent versions have included a number of new

Xbase tools. VFP 7 gave us the Object Brower (and the much less
useful Task List). VFP 8 introduced the Toolbox, Task Pane Manager

and Code References tools, and VFP 9 added the Data Explorer. VFP 9

Service Pack 1 also included a new license for the Xbase tools to make
it easier to distribute enhanced and extended versions.

The result of all these changes is that it's easier than ever for us to
change VFP's behavior without Microsoft's intervention.

Given the completeness and the openness of the product, Microsoft

has decided to minimize changes to VFP's core (VFP.EXE) for the time
being. While they plan another service pack to fix bugs, future

enhancements to VFP will almost all come as add-on DLLs or updates
to Xbase components.

Sedna is the first effort in this direction. It has a few major goals
including making it easier to use VFP 9 with .NET and SQL Server

2005; improving the use of VFP 9 with the latest release of Windows,
Windows Vista; and enhancing the new reporting system. In addition,

it includes improvements to some of the Xbase tools. You can see
Microsoft's plan for Sedna at

http://msdn.microsoft.com/vfoxpro/roadmap/.

Part of the plan is to work more transparently. Rather than waiting

until the product is almost done and then offering a preview beta to
the community, the Fox team has been providing periodic Community

Technology Previews (CTPs). Unlike the public betas for VFP 8 and VFP

9, the CTPs aren't all-inclusive. They highlight what the team has been
working on over a particular period of time. You can find the CTPs at

the Visual FoxPro website, http://msdn.microsoft.com/vfoxpro/.

Microsoft expects to release Sedna in the first half of 2007.

Compatibility with Windows Vista is one of its goals. Microsoft has also
promised a second Service Pack for VFP 9 at the same time. (So if

you've found any bugs in the product, be sure to submit them using
the online bug reporting tool available at

http://connect.microsoft.com/. VFP is part of the "Visual Studio and
.NET Framework" connection.)

FoxPro developers have always been known for their community spirit.
In that vein and given the open nature of VFP, there are two public

projects to create and enhance open source add-ons for VFP in the
Sedna timeframe.

VFPX (originally called SednaX—the "X" stands for "eXtensions") can

be found at
http://www.codeplex.com/Wiki/View.aspx?ProjectName=VFPX. It

includes the updated New Property/Method dialog I mentioned in the
September issue, as well as a number of other tools. All are available

for download, and you're welcome to jump in and help, too.

VFPy (as far as I know, the "y" indicates the next one after "x") is

located at
http://www.codeplex.com/Wiki/View.aspx?ProjectName=VFPy. The

http://msdn.microsoft.com/vfoxpro/roadmap/
http://msdn.microsoft.com/vfoxpro/
available
http://connect.microsoft.com/
https://connect.microsoft.com/VisualStudio
https://connect.microsoft.com/VisualStudio
http://www.codeplex.com/Wiki/View.aspx?ProjectName=VFPX
http://www.codeplex.com/Wiki/View.aspx?ProjectName=VFPy

star offering there is ActiveVFP, a web development framework. Again,

you can simply use what's offered or choose to help.

Microsoft hasn't given any clues yet as to what will come after Sedna,

but it's clear that the VFP community will continue to offer new and
better tools.

–Tamar

Handling duplicates

VFP 9/8/7

Q: My users often create duplicate records with minor variations in
spelling or punctuation. How can I get rid of those duplicates?

A: What's known as "de-duping" is a long-standing database problem.
The database aspect actually isn't that hard. What's difficult is deciding

what constitutes a duplicate record. In fact, that's not a programming
problem, but a business problem.

The first step in handling duplicates is to determine what might
constitute a duplicate record. For example, do two student records

with the same name indicate duplication? Maybe, but frequently not.
After all, some names are quite common and even uncommon names

are sometimes legitimately duplicated. (One of my sons went to school
with two girls who had the same name down to the middle initial, even

though neither the first nor the last name was particularly common.)

How about two patient records with the same name and address? More

likely, but they could be parent and child. (The ultimate example of

this, of course, is the boxer George Foreman, who named all five of his
sons George.)

Even something like identical social security numbers may indicate a
data entry error rather than duplication. So, the first lesson is that in

most cases, code can't decide whether two records are duplicates or
not; a human has to make that decision. The best code can do is

suggest that two records might be duplicates and present them for
inspection.

The second problem is that typically, the reason for duplicates isn't
exact matches, but near matches. Misspellings, changes in

punctuation, using different forms of a name ("Michael" vs. "Mike," for
example), and other such variations won't turn up when searching for

exact matches, unless you can identify fields to match that aren't

subject to such problems.

VFP has some tools to help in such situations. For example, you can

reduce a string to only alphabetic characters and spaces by applying
CHRTRAN() twice, like this:

? CHRTRAN(cString, ;
 CHRTRAN(LOWER(cString), ;
 "abcdefghijklmnopqrstuvwxyz ", ""), "")

If you want to keep digits as well, add them to the second parameter

of the inner call:

? CHRTRAN(cString, ;
 CHRTRAN(LOWER(cString), ;
 "abcdefghijklmnopqrstuvwxyz 0123456789", ""), "")

VFP includes two functions that help somewhat in de-duping, though

they're not as useful as they initially seem. SOUNDEX() takes a string
and returns a four-character code (a letter followed by three digits)

that represents the sound of the original string. It's not bad at
matching varying spellings, especially of names, but the letter is

always the first letter of the original string, so homonyms like "Kathy"
and "Cathy" return different values ("K300" and "C300", respectively).

In addition, SOUNDEX() only encodes the first four distinct consonant
sounds, so strings that vary near the end may have the same value.

For details on the algorithm used by SOUNDEX(), see

http://en.wikipedia.org/wiki/Soundex. You can find several
alternatives to SOUNDEX() on the FoxPro wiki: http://fox.wikis.com

and search for Soundex.

DIFFERENCE() takes two strings and returns a value between 1 and 4

to indicate how similar the strings are. The higher the number, the
closer the match. Like SOUNDEX() however, the first letter counts

more, so identical-sounding strings that have different first letters
never rank higher than 3.

Neither SOUNDEX() nor any of its variants will handle the nickname
problem. To deal with that, you'll have to write some code. One option

is to create a translation table where each record has a string you
might find and the string to substitute for matching purposes. Then,

write a function that takes the name you have and looks it up in the
table. One problem with this strategy is that a particular nickname

might actually be used for more than one name. For example, the

http://en.wikipedia.org/wiki/Soundex
http://fox.wikis.com/

nickname "Ted" sometimes stands for "Theodore," but sometimes

stands for "Edward."

Since the nickname problem applies only to first names, not to

surnames, another option is to use only the first initial when looking
for duplicates. Again, this isn't an ideal solution because some

nicknames have a different initial than the name they stand for (such
as "Tony" for "Anthony"). Unfortunately, there is no perfect solution.

A variant of the nickname problem that applies mostly to company and
organization names is easier to solve. Some words tend to be written

differently at different times. The most common is probably "and,"
which gets written variously as "and," "&", and "+." Similarly,

"company" is sometimes spelled out and sometimes written as "Co." A
substitution table is far more effective in this case than with people's

names.

Another problem related to the nickname problem also applies to

names of organizations and businesses. These names tend to have

multiple words and some of them may be omitted at times. For
example, you might find "The Philadelphia Zoo," "Philadelphia Zoo"

and even "The Philadelphia Zoological Gardens." It's not hard to
eliminate common words like "the"; just use STRTRAN():

? ALLTRIM(STRTRAN(" " + cString + " ", " the ", "", -1, -1, 1))

Note the spaces before and after the word "the" to ensure we don't

remove the word "the" from the middle of another word (like "other").
Since "the" might appear at the beginning of the string we're checking,

I've added a space in front of that string. Similarly, a space afterwards
ensures that we can find the desired word at the end (though it's

unlikely "the" would appear at the end of the string to be checked).
The result is wrapped in ALLTRIM() to remove those extra spaces, if

necessary. The function call also uses the optional Flags parameter of

STRTRAN() to make the search case-insensitive.

Putting all this together, the transformations you might want to apply

to a given field before looking for duplicates are:

 Remove punctuation

 Eliminate spelling differences (whether via SOUNDEX() or
something else)

 Make nicknames and abbreviations uniform
 Remove helper words

For a given situation, you can choose the appropriate transformations

and write a function that handles them. For a more general solution,
you could data-drive the whole process, with a table to list the fields of

interest and the transformations to apply.

Oddly, once you've solved the business problem of what constitutes a

potential duplicate, identifying them is easy. A single query (or prior to
VFP 9, two queries) for each combination of expressions that identifies

potential duplicates does the trick.

To demonstrate, I created a table based on the Customer table from

the example Northwind database. My table, called Cust, contains a
subset of the records from the original. It also contains duplicates of

several records, with modifications to the CompanyName field. For this
example, let's look for duplicates with similar company names in the

same country. Here's the query that finds the suspects:

SELECT * ;
 FROM Cust ;
 JOIN (SELECT SOUNDEX(companynam) as ccode , ;
 Country ;
 FROM Cust ;
 GROUP BY 1,2 ;
 HAVING CNT(*)>1) Dups ;
 ON SOUNDEX(CompanyNam) = cCode ;
 AND Cust.Country = Dups.Country ;
 ORDER BY CompanyName ;
 INTO CURSOR PotentialDups

The query uses a derived table, that is, a subquery in the FROM
clause, which finds all the unique combinations of

SOUNDEX(CompanyNam) and Country and retains only those
combinations for which there's more than one record. The main query

then retrieves all the records in the table that have those particular
combinations. In VFP 8 and earlier, put the code for the derived table

into a separate query that saves the results in a cursor, then use that

cursor in the main query. (The Cust table and the query above are
included on this month's Professional Resource CD.)

If there are several ways to specify potential duplicates, you'll need to
execute several queries and then combine the results. Once you have

the list of potential duplicates, you can show it to users and let them
decide which records to keep and which to discard or consolidate.

–Tamar

